

Copyright 2025 SIOCODE LLC., All rights reserved

ProJor business use-case

Company Background
ModuWare Systems Ltd. maintains a plugin-based field-service platform
(150+ modules) for utility companies. Each module exposes its metadata
through a lightweight JSON descriptor consumed by the runtime.

Their Vision
A new product generation mandates that every module exposes its
capabilities as a strongly-typed Java class that implements an annotated
interface. Migrating 150+ modules manually would freeze feature work for
weeks and endanger release dates. ModuWare wants this structural shift -
and any future one - to be performed safely and in bulk.

They also envisioned developing a self-serving feature development agent for
their customers, so they are able to create the modules they need themselves.

Current Environment
The ModuWare application lives inside a mono-repo, which contains the
application core and all of the application’s modules. There is a lot of code and
logic duplication, which was technically necessary for the module-based
approach to be viable: JSON descriptors and module build configs are
routinely copy-pasted to create new modules, while realistically there is only a
few lines of code difference between the modules.

Using LLMs directly to generate code in the new self-serving developer agent
turned out to be a bad idea due to hallucinations, that seem to stick around
nomatter the contents of the system prompt.

Copyright 2025 SIOCODE LLC., All rights reserved

Business Requirements
• Migrate all existing modules to the new Java-class descriptor
• Avoid long freeze periods during future framework upgrades
• Develop a self-serving module developer agent for their customers

Technical Requirements
• Model module structure and descriptors explicitly as code
• Generate:

o Java descriptor classes implementing the annotated interface
o Updated module wiring and dependency injection configurations
o OpenAPI contracts of the modules
o Module registration and integration tests
o Consistent build configurations across all modules
o Up-to-date developer documentation (e.g., module catalog,

architectural diagrams)
• Allow changes in descriptor structure to be propagated automatically

to all modules
• Maintain clean separation between generated scaffolds and hand-

written business logic

Application of ProJor
ModuWare uses ProJor to formalize the internal structure of modules,
including their descriptors, wiring, and build system definitions.

The descriptor definitions, build configuration files, integration tests, and
developer documentation are all generated from the ProJor model, which
eliminates duplication and guarantees consistency across the entire mono-
repo.

When the structure of a module descriptor changes, the model is updated
once, and ProJor automatically regenerates the affected scaffolding across
all modules, without touching custom business logic. This drastically reduces
the cost and risk of future framework upgrades.

Furthermore, the self-serving agent can now generate the YAML input of
ProJor, resulting in 100% complete and working project scaffolds, opposed to
hallucinated or incomplete outputs.

Summary
By adopting ProJor, ModuWare Systems transforms its plugin ecosystem
into a fully model-driven architecture. They eliminate the risk and manual labor
traditionally associated with large-scale structural upgrades, enabling mass
migrations and framework evolution with minimal downtime.

Copyright 2025 SIOCODE LLC., All rights reserved

New module descriptors, wiring, build configurations, tests, and
documentation are generated automatically from the central model, keeping
the system consistent and traceable at all times.

The introduction of model-driven inputs for the self-serving module developer
agent ensures that customers can create new modules reliably, without the
instability and unpredictability of LLM-based freeform code generation.

As a result, ModuWare not only safeguards the long-term maintainability of
their platform but also unlocks new revenue streams by empowering
customers to extend the system themselves — securely, quickly, and without
compromising architectural standards.

